Multisource data Inference on multi-source data
Intro
-
A review on machine learning principles for multi-view biological data integration
- 발표자 : 한상일 발표자료
-
Statistical methods in integrative genomics
- 발표자 : 김민우 발표자료
-
General overview on the merits of multimodal neuroimaging data fusion
- 발표자 : 박재성 발표자료
-
Multiple factor analysis: principal component analysis for multitable and multiblock data sets
- 발표자 : 장우녕 발표자료
Multi source
-
Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
- 발표자 : 김재민 발표자료
-
Structural learning and integrative decomposition of multi-view data
- 발표자 : 최서원 발표자료
-
A general framework for association analysis of heterogeneous data
- 발표자 : 이수진 발표자료
-
Integrative Multi-View Reduced-Rank Regression: Bridging Group-Sparse and Low-Rank Models
- 발표자 : 조동혁 발표자료
-
Supervised multiway factorization
- 발표자 : 박재성 발표자료
-
A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
- 발표자 : 김민우 발표자료
-
Integrating multi-source block-wise missing data in model selection
- 발표자 : 장우녕 발표자료
-
Joint and individual analysis of breast cancer histologic images and genomic covariates
- 발표자 : 장우녕 발표자료
-
D-CCA: A Decomposition-Based Canonical Correlation Analysis for High-Dimensional Datasets
- 발표자 : 조동혁 발표자료
-
Integrative Factorization of Bidimensionally Linked Matrices
- 발표자 : 홍승기 발표자료
-
Incorporating biological information in sparse principal component analysis with application to genomic data
- 발표자 : 박재성 발표자료
-
OnPLS—A Novel Multiblock Method for the Modelling of Predictive and Orthogonal Variation
- 발표자 : 한상일 발표자료